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Mineralogical Pathways for Arsenic in Weathering Meta-Shales: Regional and Site Studies in the Northern Appalachians
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Concerns about arsenic-bearing groundwaters in New England, coupled with

Inconsistencies in published literature identifying potential arsenic hosts, convinced
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ANALYTICAL PROCEDURES: Guidotti and Van Baalen, 1999

Samples were examined using a JEOL 840 scanning electron microscope and a Horesh. 2001
JEOL JXA-8900R elctron probe microanalyser. X-ray diffraction patterns were Robi nsé)n and’ others. 2000:
obtained using a Scintag X1 Advanced Diffraction system and the ICDD Stewart. 1998: | |
database (2000) and JADE 5.0 software program. | |

oxidize less readily than coexisting pyrrhotite or arsenopyrite,
however, more cobalt-rich varieties of arsenopyrite are less
resistant to weathering than cobalt-poor arsenopyrite. Lollingite
weathers readily, especially varieties containing small amounts
of NI.




